現代的轉子發動機由繭形殼體(一個三角形轉子被安置在其中)組成。轉子和殼體壁之間的空間作為內部燃燒室,通過氣體膨脹的壓力驅動轉子旋轉。和普通內燃機一樣,轉子發動機必須在其工作室中相繼形成進氣、壓縮、燃燒和排氣四個工作過程。如果將三角形的轉子放置在圓形殼體的中心部,工作室將不會隨著殼體內部轉子的旋轉而在體積上發生變化。即使空燃混合氣在那里點燃,燃燒氣體的膨脹壓力也僅作用在轉子的中部,不會產生旋轉。這就是為什么殼體的內側圓周被設計成旋輪線外形并和安裝在偏心軸上的轉子組裝在一起的原因。因此,每轉一圈,工作室的體積變化兩次,從而實現內燃機的四個工作過程。

轉子和殼體壁之間的空間作為內部燃燒室,通過氣體膨脹的壓力驅動轉子旋轉。和普通內燃機一樣,轉子發動機必須在其工作室中相繼形成四個工作過程。如果將三角形的轉子放置在圓形殼體的中心部,工作室將不會隨著殼體內部轉子的旋轉而在體積上發生變化。即使空燃混合氣在那里點燃,燃燒氣體的膨脹壓力也僅作用在轉子的中部,不會產生旋轉。這就是為什么殼體的內側圓周被設計成旋輪線外形并和安裝在偏心軸上的轉子組裝在一起的原因。因此,每轉一圈,工作室的體積變化兩次,從而實現內燃機的四個工作過程。

圖1

圖2
黃色:新鮮氣;紅色:壓縮、點火;灰色:廢氣
馬自達的轉子式發動機

體積小重量輕:
轉子發動機有幾個優點,其中最重要的一點是減小了體積和減輕了重量。在運行安靜性和平穩性兩方面,雙轉子RE相當于直列六缸往復式發動機。在保證相同的輸出功率水平前提下,轉子式發動機的設計重量是往復式的三分之二,這個優點對于汽車工程師們有著無比的吸引力。特別是近年來,在防撞性(碰撞安全)、空氣動力學、重量分布和空間利用等方面的要求越來越嚴格。
精簡結構:
由于轉子發動機將空燃混合氣燃燒產生的膨脹壓力直接轉化為三角形轉子和偏心軸的轉動力,所以不需要設置連桿,進氣口和排氣口依靠轉子本身的運動來打開和關閉;不再需要配氣機構,包括正時齒帶、凸輪軸、搖臂、氣門、氣門彈簧等,而這在往復式發動機中是必不可少的一部分。綜上所述,轉子發動機組成所需要的部件大幅度減少。
均勻的扭矩特性:
根據研究結果,轉子發動機在整個速度范圍內有相當均勻的扭矩曲線,即使是在兩轉子的設計中,運行中的扭矩波動也與直列六缸往復式發動機具有相同的水平,三轉子的布置則要小于V型八缸往復式發動機。
運行更安靜,噪音更小:
對于往復式發動機,活塞運動本身就是一個振動源,同時氣門機構也會產生令人討厭的機械噪音。轉子發動機平穩的轉動運動產生的振動相當小,而且沒有氣門機構,因此能夠更平穩和更安靜的運行。
可靠性和耐久性:
如前所述,轉子的轉速是發動機轉速的三分之一。因此,在轉子發動機以9000
rpm的轉速運轉時,轉子的轉速約為該轉速的三分之一。另外,由于轉子發動機沒有那些高轉速運動部件,如搖臂和連桿,所以在高負荷運動中,更可靠和更耐久。在1991的勒芒汽車賽中的大獲全勝就充分證明了這一點。
與傳統往復式發動機的比較
往復式發動機和轉子發動機都依靠空燃混合氣燃燒產生的膨脹壓力以獲得轉動力。兩種發動機的機構差異在于使用膨脹壓力的方式。在往復式發動機中,產生在活塞頂部表面的膨脹壓力向下推動活塞,機械力被傳給連桿,帶動曲軸轉動。
對于轉子發動機,膨脹壓力作用在轉子的側面。 從而將三角形轉子的三個面之一推向偏心軸的中心(見圖中力PG)。這一運動在兩個分力的力作用下進行。一個是指向輸出軸中心(見圖中的Pb)的向心力,另一個是使輸出軸轉動的切線力(Ft)。
殼體的內部空間(或旋輪線室)總是被分成三個工作室。 在轉子的運動過程中,這三個工作室的容積不停地變動,在擺線形缸體內相繼完成進氣、壓縮、燃燒和排氣四個過程。每個過程都是在擺線形缸體中的不同位置進行,這明顯區別于往復式發動機。往復式發動機的四個過程都是在一個汽缸內進行的。
轉子發動機的排氣量通常用單位工作室容積和轉子的數量來表示。例如,對于型號為13B的雙轉子發動機,排量為“654cc
× 2“。
單位工作室容積指工作室最大容積和最小容積之間的差值;而壓縮比是最大容積和最小容積的比值。往復式發動機上也使用同樣的定義。

如圖中所示,轉子發動機工作容積的變化,以及與四循環往復式發動機的比較。盡管在這兩種發動機中,工作室容積都成波浪形穩定變化,但二者之間存在著明顯的不同。首先是每個過程的轉動角度:往復式發動機轉動180度,而轉子發動機轉動270度,是往復式發動機的1.5倍。換句話說,在往復式發動機中,曲軸(輸出軸)在四個工作過程中轉兩圈(720度); 而在轉子發動機中,偏心軸轉三圈(1080度),轉子轉一圈。這樣,轉子發動機就能獲得較長的過程時間,而且形成較小的扭矩波動,從而使運轉平穩流暢。
此外,即使在高速運轉中,轉子的轉速也相當緩慢,從而有更寬松的進氣和排氣時間,為那些能夠獲得較高的動力性能的系統的運行提供了便利。
